Semiparametric likelihood inference for left-truncated and right-censored data.
نویسندگان
چکیده
This paper proposes a new estimation procedure for the survival time distribution with left-truncated and right-censored data, where the distribution of the truncation time is known up to a finite-dimensional parameter vector. The paper expands on the Vardis multiplicative censoring model (Vardi, 1989. Multiplicative censoring, renewal processes, deconvolution and decreasing density: non-parametric estimation. Biometrika 76: , 751-761), establishes the connection between the likelihood under a generalized multiplicative censoring model and that for left-truncated and right-censored survival time data, and derives an Expectation-Maximization algorithm for model estimation. A formal test for checking the truncation time distribution is constructed based on the semiparametric likelihood ratio test statistic. In particular, testing the stationarity assumption that the underlying truncation time is uniformly distributed is performed by embedding the null uniform truncation time distribution in a smooth alternative (Neyman, 1937. Smooth test for goodness of fit. Skandinavisk Aktuarietidskrift 20: , 150-199). Asymptotic properties of the proposed estimator are established. Simulations are performed to evaluate the finite-sample performance of the proposed methods. The methods and theories are illustrated by analyzing the Canadian Study of Health and Aging and the Channing House data, where the stationarity assumption with respect to disease incidence holds for the former but not the latter.
منابع مشابه
Semiparametric Analysis of Transformation Models with Left-truncated and Right-Censored Data Director
We analyze left-truncated and right-censored (LTRC) data using semiparametric transformation models. It is demonstrated that the approach of Chen et al. (2002) can be extended to LTRC data. A simulation study is conducted to investigate the performance of the proposed estimators.
متن کاملStrong Convergence Rates of the Product-limit Estimator for Left Truncated and Right Censored Data under Association
Non-parametric estimation of a survival function from left truncated data subject to right censoring has been extensively studied in the literature. It is commonly assumed in such studies that the lifetime variables are a sample of independent and identically distributed random variables from the target population. This assumption is often prone to failure in practical studies. For instance, wh...
متن کاملEmpirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm
Mai Zhou 1 University of Kentucky, Lexington, KY 40506 USA Summary. Empirical likelihood ratio method (Thomas and Grunkmier 1975, Owen 1988, 1990, 2001) is a general nonparametric inference procedure that has many nice properties. Recently the procedure has been shown to work with some censored/truncated data with various parameters. But the computation of the empirical likelihood ratios with c...
متن کاملLikelihood Inference for Left Truncated and Right Censored Lifetime Data
Left truncation and right censoring arise naturally in lifetime data. Left truncation arises because in many situations, failure of a unit is observed only if it fails after a certain period. Often, the units under study may not be followed until all of them fail and the experimenter may have to stop at a certain time when some of the units may still be working. This introduces right censoring ...
متن کاملMaterials for “ Semiparametric likelihood inference for left - truncated and right censored data ”
Sketch proof of Theorem 1. For fixed θ, denote the maximizer of ln(θ, F ) by F̂θ. Obviously, ψ̂n = (θ̂n, F̂n) is just the joint maximizer of ln(ψ). By a similar argument as in the proof of Property 1 in Vardi (1989), we can show that maximizing the log-likelihood function ln for a fixed θ is equivalent to maximizing a strictly log-concave problem over a convex region, hence implying a unique maximi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2015